1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
#!/usr/bin/env python3
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at https://mozilla.org/MPL/2.0/.
import argparse
import dataclasses
from decimal import getcontext, Decimal
DESCRIPTION = """Help resistor value calculation for hardware version detection"""
# fmt: off
IMPLEMENTED_SERIES = {
24: (1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1),
}
"""Series are hardcoded from Wikipedia since they do not follow the formula"""
# fmt: on
MULTIPLIERS = (
100.0,
1000.0,
10000.0,
)
TOLERANCE = Decimal(1.0)
def main() -> None:
getcontext().prec = 3
args = Arguments.from_cli()
resistors: list[Resistor] = []
for multiplier in MULTIPLIERS:
for value in IMPLEMENTED_SERIES[args.series]:
resistors.append(
Resistor(
resistance=Decimal(multiplier) * Decimal(value),
tolerance=TOLERANCE,
)
)
voltage_dividers = []
for r1 in resistors:
for r2 in resistors:
combination = VoltageDivider(voltage=args.voltage, r1=r1, r2=r2)
voltage_dividers.append(combination)
sorted_voltage_dividers = sorted(voltage_dividers, key=lambda c: c.v_adc)
filtered_voltage_dividers = filter(sorted_voltage_dividers)
results = VoltageDividers(
combinations=tuple[VoltageDivider, ...](filtered_voltage_dividers)
)
print(
results.to_tsv(
voltage=args.voltage,
n_bits_adc=args.n_bits_adc,
)
)
@dataclasses.dataclass(frozen=True, kw_only=True)
class Arguments:
series: int
voltage: Decimal # volts
n_bits_adc: int # number of bits
def __post_init__(self) -> None:
assert isinstance(self.series, int)
assert self.series in IMPLEMENTED_SERIES
assert isinstance(self.voltage, Decimal)
assert 0.0 < self.voltage
assert isinstance(self.n_bits_adc, int)
assert self.n_bits_adc > 0
@staticmethod
def from_cli() -> "Arguments":
parser = argparse.ArgumentParser(
description=DESCRIPTION,
)
parser.add_argument(
"-s",
"--series",
default=24,
help=f"resistor E series (supported: {[k for k in IMPLEMENTED_SERIES]})",
)
parser.add_argument("-v", "--voltage", default=3.3, help="in volts")
parser.add_argument("-b", "--bits", default=12, help="number of ADC bits")
args = parser.parse_args()
return Arguments(
series=int(args.series),
voltage=Decimal(args.voltage),
n_bits_adc=int(args.bits),
)
@dataclasses.dataclass(frozen=True, kw_only=True)
class Resistor:
resistance: Decimal # ohm
tolerance: Decimal # percent
def __post_init__(self) -> None:
assert isinstance(self.resistance, Decimal)
assert self.resistance >= Decimal(0.0)
assert isinstance(self.tolerance, Decimal)
assert self.tolerance >= Decimal(0.0)
def __str__(self) -> str:
return f"{float(self.resistance)} Ohm ({float(self.tolerance)} %)"
@property
def resistance_min(self) -> Decimal:
return self.resistance * (Decimal(1.0) - (self.tolerance / Decimal(100.0)))
@property
def resistance_max(self) -> Decimal:
return self.resistance * (Decimal(1.0) + (self.tolerance / Decimal(100.0)))
@dataclasses.dataclass(frozen=True, kw_only=True)
class VoltageDivider:
voltage: Decimal # voltage over both resistors in volts
r1: Resistor # resistor closer to +
r2: Resistor # resistor closer to -
@property
def power(self) -> Decimal:
return self.voltage**2 / (self.r1.resistance + self.r2.resistance)
@property
def v_adc_min(self) -> Decimal:
return self.voltage / (
Decimal(1.0) + self.r1.resistance_max / self.r2.resistance_min
)
@property
def v_adc(self) -> Decimal:
return self.voltage / (Decimal(1.0) + self.r1.resistance / self.r2.resistance)
@property
def v_adc_max(self) -> Decimal:
return self.voltage / (
Decimal(1.0) + self.r1.resistance_min / self.r2.resistance_max
)
@staticmethod
def volts_to_n_adc(
max_voltage: Decimal, voltage_adc: Decimal, n_bits_adc: int
) -> int:
n_max = 2**n_bits_adc - 1
continuous = voltage_adc / max_voltage * Decimal(n_max)
discrete = int(continuous + Decimal(0.5))
return discrete
def n_adc_min(self, n_bits_adc: int) -> int:
return self.volts_to_n_adc(
max_voltage=self.voltage,
voltage_adc=self.v_adc_min,
n_bits_adc=n_bits_adc,
)
def n_adc(self, n_bits_adc: int) -> int:
return self.volts_to_n_adc(
max_voltage=self.voltage,
voltage_adc=self.v_adc,
n_bits_adc=n_bits_adc,
)
def n_adc_max(self, n_bits_adc: int) -> int:
return self.volts_to_n_adc(
max_voltage=self.voltage,
voltage_adc=self.v_adc_max,
n_bits_adc=n_bits_adc,
)
def to_tsv(self, voltage: Decimal, n_bits_adc: int) -> str:
return (
f"{self.r1}"
f"\t{self.r2}"
f"\t{self.v_adc_min}"
f"\t{self.v_adc}"
f"\t{self.v_adc_max}"
f"\t0x{self.n_adc_min(n_bits_adc=n_bits_adc):03X}"
f"\t0x{self.n_adc(n_bits_adc=n_bits_adc):03X}"
f"\t0x{self.n_adc_max(n_bits_adc=n_bits_adc):03X}"
f"\t{self.power}"
)
@dataclasses.dataclass(frozen=True, kw_only=True)
class VoltageDividers:
combinations: tuple[VoltageDivider, ...]
def to_tsv(self, voltage: Decimal, n_bits_adc: int) -> str:
output = (
"R1"
"\tR2"
"\tV_ADC_min"
"\tV_ADC"
"\tV_ADC_max"
"\tn_ADC_min"
"\tn_ADC"
"\tn_ADC_max"
"\tpower"
)
for combination in self.combinations:
output += "\n" + combination.to_tsv(
voltage=voltage,
n_bits_adc=n_bits_adc,
)
return output
def filter(source: list[VoltageDivider]) -> list[VoltageDivider]:
sink: list[VoltageDivider] = [source[0]]
for combination in source:
candidate_min = combination.v_adc_min
current_max = sink[-1].v_adc_max
if candidate_min > current_max:
sink.append(combination)
return sink
if __name__ == "__main__":
main()
|